

HIGH-PERFORMANCE MATERIALS

Materion is the world's leading resource for cladding, electroplating, solder coating, and other specialty strip products.

Since 1968, our cladding business has continued to pioneer state-of-the-art metal processing of more than 200 alloys — including ferrous, non-ferrous, refractory, and precious metals.

CONTENTS

- Copper, High Copper,
 Beryllium Copper, Brass, Bronze
- Steels, Aluminum, Zinc, Nickel & Nickel Alloys, Refractory Metals, Low Expansion Alloys
- 10 Precious Metal Alloys
- II Galvanic Corrosion Chart
- 12 Solders, Brazing Alloys
- 14 Alloy Compatibility
- 16 "Not Your Average" Hardness Values Chart

CHART FOOTNOTES

- Lbs. per cubic inch @ 68° F (annealed)
- ² Elastic modulus in tension x 10⁶ P.S.I.
- ³ % IACS at 68°F (annealed)
- ⁴ BTU per foot per hour per °F at 68°F (annealed)
- ⁵ Inches per inch x 10-6 from 68°F to 572°F
- ⁶ Reference specification for strip
- ⁷ Ultimate tensile strength x 1000 P.S.I.
- 8 0.2% offset yield strength x 1000 P.S.I. Yield strengths are not used or accepted as specifications by brass mills; but, because of their usefulness, values are given here for design purpose.
- 9 % elongation in 2". Elongation values vary considerably with thickness. The rolled temper data given are base on thicknesses ranging from .010" to .035" strip.
- ¹⁰ Approximate Vickers hardness HV unless otherwise specified.
- ¹¹ Standard heat treatment 2 hrs. at 600°F (3 hrs. @ 600°F for annealed temper)
- 12 Standard heat treatment 2 hrs. at 700°F (2 hrs. @675°F for TS04)

NOTE: The properties on these charts are provided for reference only.

CUSTOM-ENGINEERED METAL SOLUTIONS

The high-performance demands of today's markets require custom-engineered solutions. We match our leading technologies to your challenges – delivering a high-performance, cost-effective metal system. As your full-service supplier, we thrive on enhancing your product's performance while lowering your total cost.

4		
	4	

	COPPER								
	C10200	C10700	C11000	C12200	C14415	C14530	C15100	C15500	C18080
	OFHC copper	OFS copper	ETP copper	DHP copper	CuSn 0.15		ZHC copper		K88
	99.95 Cu 10 ppm 0 max	99.9Cu .085 min. Ag	99.9Cu	99.9Cu .025P	99.85Cu .12Sn	99.95Cu .013Te .013Sn	99.8Cu .15Zr	99.75Cu .1 I Mg .06Ag .06P	99Cu .5Cr .2Ag .1Fe .1Ti .05Si
Density ^I Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.323 17 10 226 9.8 B152	.323 17 100 224 9.4 B152	.322 17 100 224 9.8 B152	.323 17 85 196 9.8 B152	.321 18.5 86 208 9.8 B747	.323 17.4 95 208 9.8 B888	.323 17.5 95 208 9.8 B888	.322 17 86 200 9.8 B888	.320 19.5 80 185 9.8
Annealed UTS ⁷ YS ⁸ EL ⁹ HV ¹⁰	26-38 6-13 20-42 40-75	26-38 6-13 20-42 40-75	26-38 6-13 20-42 40-75	26-38 6-13 20-42 40-75	32 nom. 11 nom. 40 nom. 60 nom.	34 nom. 12 nom. 40 nom. 60 nom.	37-42 9-20 35 nom. 55 nom.	34-43 15-22 30-42 65 nom.	
I/4 Hard UTS YS EL HV	34-42 26-39 13-33 70-95	34-42 26-39 13-33 70-95	34-42 26-39 13-33 70-95	34-42 26-39 13-33 70-95	36-46 28 min. 9 min. 60-90	35-45 26-37 7 min. 85-105	40-45 26-40 11-25 90 nom.	42-50 33-40 20-28 95 nom.	
I/2 Hard UTS YS EL HV	37-46 30-44 8-32 85-105	37-46 30-44 8-32 85-105	37-46 30-44 8-32 85-105	37-46 30-44 8-32 85-105	43-53 36 min. 3 nom. 85-110	40-50 38-48 5 min. 95-120	43-51 35-48 3-13 105 nom.	45-55 38-48 13-22 113 nom.	
3/4 Hard UTS YS EL HV	41-50 39-48 5-24 90-110	41-50 39-48 5-24 90-110	41-50 39-48 5-24 90-110	41-50 39-48 5-24 90-110		44-54 39-51 3 min. 100-125	47-56 45-55 I-7 I I 5 nom.	48-58 45-54 7-13 118 nom.	
Hard UTS YS EL HV	43-52 41-50 3-16 95-115	43-52 41-50 3-16 95-115	43-52 41-50 3-16 95-115	43-52 41-50 3-16 95-115	52-62 43 min. 3 min. 105-130	47-57 43-56 2 min. 108-128	53-62 51-61 1-5 122 nom.	56-64 50-60 6-12 126 nom.	TM04 71-81 65 min. 8 nom. 140-170
Extra Hard UTS YS EL HV	47-56 46-55 3-5 103-120	47-56 46-55 3-5 103-120	47-56 46-55 3-5 103-120	47-56 46-55 3-5 103-120		50-60 47-59 I min. 108-128	59-65 57-64 I-3 I29 nom.	63-72 58-64 3-7 130 nom.	TM08 77-87 85 min. 4 nom. 150-180
Spring UTS YS EL HV	50-58 48-57 2-4 110-126	50-58 48-57 2-4 110-126	50-58 48-57 2-4 110-126	50-58 48-57 2-4 110-126	61-71 51 min. 2 min. 120-140	54-64 51-63 I min. 112-130	64-71 62-70 1-2 126 nom.	65-73 60-74 I-5 I 35 nom.	TR08 75-90 72 min. 4 nom. 160-190
Ex. Spring UTS YS EL HV	52 min. 51 min. 1-3 115 min.	52 min. 51 min. 1-3 115 min.	52 min. 51 min. 1-3 115 min.	52 min. 51 min. 1-3 115 min.		58 min. 56 min. 115 min.		68-75 63-78 I <i>-</i> 4	

	HIGH	COPPE	?			BERYL	LIUM C	OPPER		_	
	C19025	C19210	C19400	C19500	C19700	C17200	C17200	C17200	C17410	C17460	C17510
	NB109	XPI0				Alloy 25 as rolled	Alloy 25 age hard	Alloy 190 Mill Hard	Alloy 174 Mill Hard	Alloy 60 Mill Hard	Alloy 3 Mill Hard
	98Cu 1.0Ni \0.9Sn	99.85Cu .1Fe .03P	97.4Cu 2.35Fe .03P	97Cu 1.5Fe .8Co .6Sn .2P	99Cu .6Fe .2P .05Mg	98Cu 1.9Be	98Cu I.9Be	98Cu 1.9Be	99Cu 0.3Be 0.5Co	98Cu 1.2Ni 0.3Be	97.8Cu 1.8Ni .4Be
Density ^I Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.322 18.8 40 100 9.7 B422	.323 17.2 91 201 9.7	.321 17.5 60 150 9.7 B465	.322 17.3 50 115 9.6 B465	.321 17.2 80 185 9.6 B465	.298 19 15 60 9.9 B194	.302 19 22 60 9.7 B194	.302 19 17 60 9.7 B194	.318 20 50 135 9.8 B768	.318 20 50 128 9.8 B768	.319 20 45 (HT) 140 9.8
Annealed JTS ⁷ YS ⁸ EL ⁹ HV ¹⁰		34-49 17-32 25 min. 70 nom.	40-50 20-40 15-35 80 nom.	50-60 21-35 22-31	43-53 16 min. 20 min.	60-78 30-55 35 min. 90-145	AT 165-195 140-175 3-15 353-413	AM 100-110 70-95 16-30 210-251			A 35-55 20-45 20-40 65-125
I/4 Hard UTS YS EL HV	47-69 53 nom. 15-35 120-155	40-55 20-35 15 min. 95 nom.	45-60 40-56 6-20 95-120	60-72 45-79 5-23 112-145		75-88 60-80 20-45 121-185	1/4 HT 175-205 150-185 3-10 353-424	1/4 HM 110-120 80-110 15-25 230-271			HTC 75-85 50-75 8-20 147-176
I /2 Hard UTS YS EL HV	HR02 63-76 66 nom. 9-25 135-170	47-60 44-59 5 min. 105 nom.	53-63 36-58 6-15 100-125	68-78 66-76 3-9 140-155	53-63 36-60 6-29 122-144	85-100 75-95 12-30 176-216	I/2 HT 185-215 160-195 1-8 373-435	1/2 HM 120-135 95-125 12-22 250-301	1/2 HT 95-115 80-100 10 Min. 180-240		
3/4 Hard JTS YS EL HV		52-62 60-62 4 min. 115 nom.		75-85 72-82 2-5 150-160		90-110				3/4 HT 115-135 95-115 11 Min.	AT 100-130 80-100 10-25 195-275
Hard JTS YS EL HV	HR04 72-83 76 nom. 5-14 155-180	56-66 54-66 3 min. 120 nom.	60-70 53-65 3-8 120-140	82-90 79-87 2-3 55-165	60-70 53-68 2-12 132-153	100-120 90-112 2-18 216-287	HT 190-220 165-205 1-6 385-445	HM 135-150 110-135 9-20 285-343	HT 110-130 100-120 7 min. 210-280	HT 120-140 105-125 10 Min.	H 70-85 55-80 2-10 144-176
Extra Hard JTS (S EL HV	HR06 78-89 80 nom. 4 min. 160-195	60-70 58-70 2 min. 133 nom.	67-73 64-72 2 min. 25-145		67-73 64-71 2-10 144-158			SHM 150-160 125-140 9-18 309-363			HT 110-13! 95-120 8-20 216-28!
Spring JTS 'S EL HV	84-95 87 nom. 175-210	64 min. 62 min. I nom. I 50 nom.	70-76 67-75 I min. 130-150	88-97 85-92 1-2 165-175	70-76 67-74 2-8 148-164	_ _ _ _	_ _ _ _	XHM 155-175 135-170 4-15 317-378	_ _ _ _		
Ex. Spring JTS 'S EL HV	91-106 97 nom. 190 min.	66 min. 64 min.	73-80 70-79	97 min. 94 min. I-2 180 min.	73-80 70-78 I min. 153-174	_ _ _	_ _ _	XHMS 175-190 150-180 3-12 325-413	_ _ _		HTR 120-15 110-14 1-5

|--|

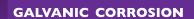
	BRASS								
	C21000	C22000	C23000	C24000	C26000	C26800	C42200	C42500	C42520
	Gilding Metal 95 Cu 5 Zn	Commercial Bronze 90 Cu 10 Zn	Red Brass 85 Cu 15 Zn	Low Brass 80 Cu 20 Zn	Cartridge Brass 70 Cu 30 Zn	Yellow Brass 66 Cu 34 Zn	Lubronze 90 Cu 9 Zn I Sn	Lubaloy X 88 Cu 10 Zn 2 Sn	Olin 4252 88 Cu 10 Zn 2 Sn .1 Fe,.1 Ni
Density ^I Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.320 17 56 135 10.0 B36	.318 17 44 109 10.2 B36	.316 17 37 92 10.4 B36	.313 16 32 81 10.6 B36	.308 16 28 70 11.1 B36	.306 15 27 11.3 B36	.318 16 31 75 10.2 B591	.317 18 28 69 10.2 B591	.318 16 30 75 10.2
Annealed UTS ⁷ YS ⁸ EL ⁹ HV ¹⁰	34-40 5-15 42-48 50-57	36-42 8-17 46-49 55-75	39-47 8-19 43-48 60-85	44-54 12-29 43-58 65-95	45-61 10-33 40-67 70-115	41-61 23 nom. 50-52 nom.	40-50 19 nom. 45 nom.	40-50 13-25 30-50 70-90	
1/4 Hard UTS YS EL HV	37-47 20-40 15-45 67-97	40-50 22-42 15-40 72-102	44-54 24-44 15-39 76-110	48-58 24-45 18-35 81-116	49-59 22-46 34-59 82-117	49-59 34 nom. 40 nom.	47-57 38 nom. 29 nom. 87-130	49-59 20-54 24-47 90-135	
I/2 Hard UTS YS EL HV	42-52 33-48 5-29 82-106	47-57 39-52 5-20 93-118	51-61 40-54 8-21 100-130	55-65 39-58 12-25 105-135	57-67 42-61 19-42 107-142	55-65 44 nom. 25 nom.	54-65 50-60 17-27 115-140	57-69 51-66 13-27 120-160	58-73 47-68 20 nom. 130-165
3/4 Hard UTS YS EL HV	46-56 40-52 2-17 93-117	52-62 44-57 3-10 105-128	57-67 49-63 4-12 118-143	61-71 48-65 6-15 124-149	64-74 55-69 8-29 130-160	62-72 53 nom. 17 nom.	62-72 64 nom. 7 nom. 130-160	62-74 58-70 10-21 135-171	68-80 61-75 15 nom. 150-180
Hard UTS YS EL HV	50-59 45-57 2-8 102-104	57-66 50-63 2-6 116-138	63-72 52-68 5-9 130-150	68-77 57-73 4-8 140-161	71-81 67-78 6-14 148-173	68-78 57 nom. 8 nom.	67-79 63-76 4-9 140-170	70-82 66-79 6-13 153-190	76-91 74-88 10 nom. 175-205
Extra Hard UTS YS EL HV	56-64 50-63 2 Max. 114-134	64-72 58-68 I-3 I30-150	72-80 64-76 3-5 146-166	78-87 66-84 2-3 158-180	83-92 79-90 2-5 164-189	79-89 67 nom. 4 nom.	75-85 73-83 2-7 150-180	76-88 73-85 4-8 165-210	88-103 85-102 6 nom. 195-225
Spring UTS YS EL HV	60-68 54-66 2 Max. 122-142	69-77 63-75 I-2 I40-160	78-86 66-88 3-4 156-176	85-93 75-90 I-2 I70-190	91-100 82-98 1-2 178-203	86-95 71 nom. 2 nom.	82-92 80-90 1-5 160-190	84-94 81-92 2-5 175-220	95-110 92-108 4 nom. 205-235
Ex. Spring UTS YS EL HV	61-69 57-68 2 Max. 124-144	72-80 69-79 I Max. I 40-166	82-90 75-88 2 Min. 162-182	89-97 78-95 I Max. I74-194	95-104 86-102 1-2 184-209	90-99 75 nom.	88 min. 86 min. I-3 I70 min.	92 min. 87 min. I-3 I90 min.	100-114 98-110 3 nom. 215-245

			-								
	BRONZ	ZE									
	C51000	C51100	C51180	C51900	C52100	C52180	C50725	C63800	C65500	C66300	C68800
	Phos. Bronze A 94,9 Cu 5 Sn .I P	Phos. Bronze 4% 95.9 Cu 4 Sn, . I P, . I Ni, . I Fe	Mod. Phos. Bronze 95.5 Cu 4.2 Sn .03P	Phos. Bronze 6% 93.9 Cu 6 Sn .1 P	Phos. Bronze C 91.9 Cu 8 Sn .1 P	Mod. Phos. Bronze 91.8 Cu 8 Sn, .03 P, .1 Ni,1.Fe	95.6 Cu 2.2 Zn 2.0 Sn	638 95 Cu 2.8 Al 1.8 Si, .4 Co	Silicon Bronze A 97 Cu 3 Si	86 Cu 9.9 Zn 2.2 Sn 1.9 Fe	688 73.5 Cu 22.7 Zn 3.4 Al .4 Co
Density ¹ 1odulus ² lect. Cond. ³ 'herm. Cond. ⁴ 'herm. Exp. ⁵ .STM ⁶	.320 16 15 40 9.9 B103	.320 16 20 48 9.9 B103	.320 16 20 50 9.9	.319 16 15 39 10.0 B103	.318 16 13 36 10.1 B103	.318 16 13 36 10.1	.322 16.4 33 87 9.7	.299 16.7 10 24 9.5 B422	.308 15 7 21 18 B96	.317 18 25 62 9.8 B592	.296 16.8 18 40 10.1 B592
Annealed UTS ⁷ 'S ⁸ EL ⁹ HV ¹⁰	43-58 19-31 48-62 70-115	40-55 16-28 45-49 67-87		48-63 16-28 50-65 70-120	53-67 23-35 60-67 80-140			77-87 45-67 27-40	56 21 63 120 nom.		77-87 44-61 30-40
I/4 Hard JTS 'S EL HV	49-61 22-52 32-50 95-135	46-58 20-50 25-47 73-132		60-72 28-60 35-55 110-160	63-75 35-62 40-60 130-170			90-102 75-90 12-21 210 nom.	68 35 30 140 nom.		87-101 63-89 10-29 210 nor
/2 Hard JTS 'S EL HV	58-73 47-68 16-38 130-165	55-70 42-70 12-31 97-158	69-84 60-80 22. nom.	64-79 49-72 20-42 120-175	69-84 51-75 25-49 150-185	90-105 84-100 25 nom.	68-80 73 nom. 11 nom. 170 nom.	100-112 87-100 7-13 225 nom.	78 45 17 175 nom.	58-73 56 nom. 20 min.	97-112 82-102 3-15 240 nor
B/ 4 Hard JTS 'S EL HV	68-80 61-75 10-20 150-180	67-82 64-80 6-15 135-174	80-92 72-90 18 nom.	74-90 64-80 14-26 160-195	80-95 70-85 18-32 175-205	97-112 88-105 20 nom.		105-117 93-105 5-10 240 nom.	190 nom.		
Hard UTS 'S L HV	76-91 74-88 4-11 175-205	72-87 70-83 2-12 148-180	85-100 77-97 12 nom.	80-96 75-92 7-16 180-215	85-100 78-95 12-30 190-220	105-120 95-115 18 nom.	81-93 85 nom. 9 nom. 192 nom.	114-126 102-115 3-6 250 nom.	94 58 8	76-91 81 nom. 17 nom.	106-121 95-108 2-7 258 nor
Extra Hard JTS 'S L	88-103 85-102 2-6 195-225	84-99 81-96 1-6 168-197	97-112 90-110 8 nom.	92-108 88-106 3-8 200-235	97-112 92-107 6-10 210-240	108-125 100-120 12 nom.	85-100 92 nom. 8 nom. 206 nom	118-130 106-119 2-5	104 60 6	88-103 93 nom. 7 nom.	113-12 102-11 2-3 266 nor
Spring JTS 'S L HV	95-110 92-108 1-3 205-235	91-106 88-101 1-5 180-209	105-119 97-117 5 nom.	99-116 95-110 2-6 210-250	105-119 100-113 3-9 225-255	115-132 105-125 8 nom.		123-134 111-121 2-4 270 nom.	110 62 4	95-110 100 nom. 5 nom.	123-13 111-11 1-2 275 nor
Ex. Spring JTS 'S L	100-114 98-110 1-3 215-245	96-108 92-104 1-4 187-218	110-122 102-120 3 nom.	105mm 100mm. 1-3	110-122 105-116 2-6 235-265	120-140 110-130 3 nom.		130 Min. 119 Min. 1-2		100-114 104 nom. 4 nom.	125 mii 117 mii 1-2 280 mii

6

		СОРРЕ	R NICE	(EL									
		C70250	C70260	C70600	C71500	C72500	C72900	C72900	C72900	C73500	C75200	C76200	C77000
		96.2 Cu 3 Ni .6 Si .2 Mg	97.5 Cu 2 Ni .5 Si	Cupro Nickel 88.6 Cu 10 Ni 1.4 Fe	Cupro Nickel 69.4 Cu 30 Ni .6 Fe	88.2 Cu 9.5 Ni 2.3 Sn	as rolled 77 Cu 15 Ni 8 Sn	age hard ¹² 77 Cu 15 Ni 8 Sn	mill hard 77 Cu 15 Ni 8 Sn	Nickel Silver 72 Cu 10 Zn 18 Ni	Nickel Silver 65 Cu 17 Zn 18 Ni	Nickel Silver 59 Cu 29 Zn 12 Ni	Nickel Silver 55 Cu 27 Zn 18 Ni
1 = -	Density ^I Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.318 19 40 85 10.0 B422	.320 19 40 90 B422	.323 20 9.1 23 9.5 B122	.323 22 4.6 17 9.0 B122	.321 20 11 31 9.2 B122	.321 18.5 7.8 17 9.1 B740	.321 18.5 7.8 17 9.1 B740	.321 19.5 7.8 17 9.1 B740	.319 18.000 8.000 21.500 9.000 B122	.316 18 6 19 9.0 B122	.310 18 9 24 8.5 B122	.314 18 5.5 17 9.3 B122
(\ E	Annealed UTS ⁷ ('S ⁸ EL ⁹ HV ¹⁰	TM00 90-110 65-90 10 min.	TM00 85-95 75 min. 15 min. 190 nom.	65-90	50-65 20-40 25 Min. 80-110	45-65 18-25 34-36 80-110	TB00 64-85 24-40 32 Min. 100-150	TX00 120-150 100-130 6 Min. 275-350	TM00 95-115 75-95 22 Min. 190-290	50-68 15-60 11-37 89-145	53-63 18-32 29-42 78-120	57-75 21-52 32-49 92-145	61-76 23-41 39-48 83-135
(\ E	I/4 Hard UTS YS EL HV			51-67 95-146	58-72 35-69 5-30 120-155	55-75 73 Max. 5 min. 164 Max	TD01 75-100 50-75 18 Min. 150-235	TS01 130-160 115-145 4 Min. 290-365		56-69 28-59 10-25 119-151	58-72 26-64 14-35 95-138	65-81 36-68 20-50 110-167	69-87 44-83 11-41 126-179
(\ E	I/2 Hard UTS YS EL HV	TM02 95-120 85-119 7 min.	TM02 95-105 95 min. 6 min. 210 nom.	58-72 120-160	66-80 60-78 3-10 140-170	65-80 59-78 3-17 132-180	TD02 85-110 65-100 8 Min. 170-275	T202 145-175 135-165 3 Min. 315-390	TM02 105-125 90-110 15 Min. 215-315	63-75 49-69 3-16 138-164	66-80 48-78 6-22 122-157	75-91 58-82 6-30 145-193	78-95 64-93 5-24 154-198
(\ E	3/4 Hard UTS YS EL HV	TM03 100-125 95-120 5 min.					95-120 90-115 3 Min. 210-290	TS03 155-185 145-175 2 Min. 325-400		69-79 59-73 2-5 142-171	74-86 69-82 4-12 138-175	83-98 73-91 4-16 160-203	88-101 84-100 3-13 171-193
(\ E	Hard JTS (S EL HV			71-83 140-174	75-88 73-84 2-4 160-185	75-90 73-88 I-5 I35-180	TD04 100-130 85-125 1 min. 220-300	T204 165-195 155-185 2 min. 335-410	TM04 115-135 105-125 10 min. 245-345	73-84 67-78 I-3 I60-180	78-91 75-90 3-7 151-188	90-105 82-97 3-6 188-215	92-109 90-108 3-6 188-220
(\ E	Extra Hard UTS ('S EL HV			73-85 158-192	80-92 78-88 I-3 I65-195	80-95 78-93 I-3 I53-218			TM06 130-150 120-145 6 min. 270-370	79-90 72-81 I-2 I70-190	86-98 85-97 3-4 175-209	99-114 93-103 1-3 209-234	102-115 101-114 1-2 214-240
(\ E	Spring JTS YS EL HV			78-86 164-196	84-94 81-90 1-2 174-200	85-100 83-97 1-2 164-218	TD08 122-145 100-140		TM08 150-178 140-170 2 min. 305-405	85-93 78-84 I 180-200	90-101 88-99 1-2 183-220	107-122 101-110 1-2 228-250	108-123 107-118 I 228-250
(\ E	Ex. Spring JTS YS EL HV					90-105 88-102 I 187-218				88 Min. 78 Min. I 185 Min.	96 Min. 95 Min. I-2 I98 Min.	114 Min. 102 Min. I 235 Min.	116 Min. 115 Min. 1 235 Min.

	STEELS S30100		S30403	S30500	S31008	S31600	S32100	S40900	S43000	G100800	K0010
	301	S30200	304U3	305	31008	31600	32100	409	430	100800	K0010 Iron
	Fe 17Cr 7Ni	Fe 18Cr 9Ni	Fe 19Cr 10Ni	Fe 18Cr 12Ni	Fe 25Cr 20Ni	Fe 17Cr 12Ni 2.5Mo	Fe 18Cr 10Ni .4Ti	Fe IICr	Fe I6Cr	Fe .08C	Fe .0050
Density ^I 10dulus ² lect. Cond. ³ herm. Cond. ⁴ herm. Exp. ⁵ STM ⁶	.285 28 2.5 9.4 9.5 A666	.285 28 2.5 9.4 9.5 A666	.284 28 2.4 9.4 9.9 A666	.29 28 2.4 9.4 9.9 A240	.29 28 2.4 9.4 9.9 A240	.29 28 2.2 8.2 9.0 A666	.29 28 2.3 9.4 9.0 A240	.28 29 2.8 14.4 6.1 A240	.28 29 2.8 13.8 6.1 A176	.283 29 6.7 A109	.278 16
nnealed TS ⁷ S ⁸ 9	110 Nom. 40 Nom. 60 Nom. 170 Nom.	90 Nom. 40 Nom. 50 Nom. 170 Nom.	84 Nom. 42 Nom. 55 Nom. 170 Nom.	85 Nom. 38 Nom. 55 Nom. 170 Nom.	95 Nom. 45 Nom. 45 Nom. 170 Nom.	84 Nom. 42 Nom. 50 Nom. 150 Nom.	90 Nom. 35 Nom. 45 Nom. 150 Nom.	55-68 25-41 20-38 123	65-80 40-60 18-30 144-176	skin rolled 40-55 25-40 24 Min. 125 Max.	40-60 30-45 25 Nur 115 Nu
/4 Hard JTS S L IV	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	125 Min. 75 Min. 25 Min. 250 Nom.	58 25 25	78-90 60-78 3-19 172-205	45-65 13-27 107-137	
/2 Hard JTS 'S EL HV	150 Min 110 Min 15 Min. 300 Nom.	140 Min. 110 Min. 15 Min. 300 Nom.	140 Min. 110 Min. 15 Min. 300 Nom.	130 Min. 110 Min. 10 Min. 300 Nom.	130 Min 110 Min 15 Min. 300 Nom.	130 Min 110 Min 10 Min. 300 Nom.	130 Min. 110 Min. 8 Min. 300 Nom.	75 74 16 172	90-100 76-92 3-7 205-228	55-75 4-16 125-170	
S/4 Hard JTS 'S EL HV	175 Min 135 Min 10 Min. 350 Nom.	165 Min. 135 Min. 10 Min. 350 Nom.	160 Min. 135 Min. 5 Min. 350 Nom.	150 Min. 135 Min. 5 Min. 350 Nom.	150 Min. 135 Min. 10 Min. 350 Nom.	150 Min 135 Min 10 Min. 350 Nom.	150 Min. 135 Min. 5 Min. 350 Nom.	82 81 9.5 190	98-110 90-103 1-7 222-242		
Hard JTS 'S :L HV	185 Min 140 Min 8 Min 390 Nom.	175 Min 140 Min 8 Min 390 Nom.	170 Min. 140 Min. 2 Min. 390 Nom.			170 Min. 140 Min. 2 Min. 390 Nom.		101 102 3 222	107-115 100-110 1-2 228-246	80-100 185 Min.	75-85 65-80 150 Nu
	maximum strength and work hardening	standard general purpose stable properties low C	stable properties low C	low work hardening good formability	high temp oxidation resistance good formability	maximum corrosion resistance	excellent resistance to oxidation & corrosion	ferretic economical use for corrosion & oxidation resistance	ferretic general use for corrosion & oxidation resistance		better formabi
1agnetic	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes

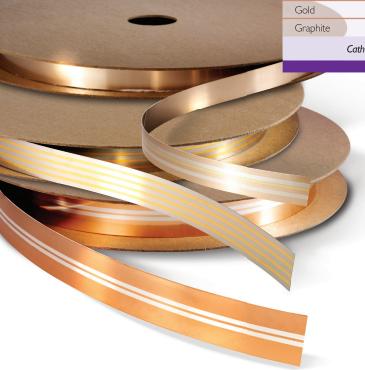

	ALUMI	NUM				ZINC		NICKE	L & NIC	KEL ALI	_OYS
	A91100	A91145	A93003	A95052	A96061	Z13004	Z 41321	N02201	N02270	N04400	N06600
	99,0 Al	99.45 AI	98.3Al I.2Mn .ICu	97.2AI 2.5Mg .25Cr	97.9Al IMg 0.6Si 0.3Cu 0.2Cr	Pure Zinc 99,98 Zn	Zn CuTi Alloy 99.2 Zn .6 Cu .15Ti	201 99,0 Ni .02 Max C	270 99.98N	Monel™* 400 65Ni 35Cu	Inconel™ 600 76 Ni 16 Cr 8 Fe
Density ^I Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.098 10 59 128 14.1 B209	.0977 10 61 130 13.1	.099 10.2 50 112 13.9 B209	.097 10.1 35 79 14.3 B209	.098 10 45 100 13.1 B209	0.258 9-13 27 61 16.7 B69	0.259 9-13 26 61 12.7 B69	.321 30 18 43 8.0 B162	.321 30 23 50 8.6	.319 26 3.4 12.6 8.8	.305 31 1.8 8.6 7.6 B168
Annealed UTS ⁷ YS ⁸ EL ⁹ HV ¹⁰	O 11-15 4 Min. 15 Min. 25 Nom.	0 8-14 3 Min. 15 Min. 20 Nom.	0 14-19 5 Min. 18 Min. 30 Nom.	0 25-31 10 Min. 14 Min. 40 Nom.	O 18 8 25 40 Nom.	10-18 30-75 25-45	21-32 15-50 50-75	50-65 12-28 30-50 120 Max.	45-55 10-25 40-55	70-85 25-45 35-50 133 Max.	80-100 40 Nom. 35-55 150 Nom
I/4 Hard UTS YS EL HV								60-75 45-66 17-26 120-150	50-65 20-34 35-48 85-112	75-95 40-80 20-40 133-160	
I/2 Hard UTS YS EL HV	H12 14-19 11 Min. 4 Min. 30 Nom.	HI2 11-16 9 Min. 6 Min. 25 Nom.	HI2 17-23 12 Min. 3 Min. 42 Nom.	H32 31-38 23 Min. 4 Min. 50 Nom.				76-92 60-84 8-21 140-170	60-70 32-44 30-45 108-130	80-100 60-90 14-30 157-188	100-125 60-100 10-25 235 Nom
3/4 Hard UTS YS EL HV								85-100 70-90 3-8 160-190	68-80 42-58 25-37 125-155	90-110 73-102 6-20 183-209	
Hard UTS YS EL HV	HI4 16-21 14 Min. — 35 Nom.	H14 12-17 10 Min. – 30 Nom.	HI4 20-26 17 Min. – 50 Nom.	H34 34-41 26 Min. – 60 Nom.			27-40 10-40 60-95	90 Min. 80 Min. 2 Min. 180-220	78-90 55-70 15-28 145-175	100-120 90-110 2-15 205-234	120-150 90-125 2-15 275 Nom
Extra Hard UTS YS EL	H16 19-24 17 Min.	H16 14-19 11 Min. –	H16 24-30 21 Min. –	H36 37-44 29 Min.	HI6 28-36 -						
HV	40 Nom	35 Nom	55 Nom	65 Nom	70 Nom						
Spring UTS YS EL HV	H18 22 Min. 20 Min. — 50 Nom.	H18 16 Min. 12 Min. — 50 Nom.	H18 27 Min. 24 Min. — 50 Nom.	H38 39 Min. 32 Min. — 50 Nom.	T4 30 Min. 16 Min. 10 Min.			96 Min. 85 Min. 1 Min. 193 Min.		120 Min. 110 Min. 1-10 234 Min.	145-170 120-160 2-10 320 Nom
Ex. Spring UTS YS EL HV					H18 42 Min. 35 Min. –						

 $[\]ensuremath{^{*}}$ Monel and Inconel are registered trademarks of Special Metals Corporation.

	REFRACTORY	METALS			LOW E	XPANSION ALI	Loys
	R04200	R05200	R50250	R60702	K93600	K94100	K94610
	Reactor Grade Niobium Nb	Unalloyed Tantalum Ta	Grade I Titanium Ti	Unalloyed Zirconium 99.2 Zr	Invar 36 64Fe 36N	,	Kovar 54Fe 29Ni 17Co
Density ¹ Modulus ² Elect. Cond. ³ Therm. Cond. ⁴ Therm. Exp. ⁵ ASTM ⁶	.310 15 11.5 30 4.1 B393	.600 27 14 34 3.7 B70	.163 15 3 9.2 5.1 B26	14 4.1 9 3.5 B551	0.292 21 2.1 5.8 2.1 B753	.293 21.5 2.4 6.2 6.1 F30	.302 20 3.5 10 2.9 F15
Annealed UTS ⁷ YS ⁸ EL ⁹ HV ¹⁰	18-38 10-30 20 Min. 55-95	30-45 20-40 20 Min. 90-120	35-60 25-45 24 Min. 120 Nom.	55-80 30-65 16 Min. 150 Nom.	65-85 35-75 18-32	65-85 35-75 18-32	65-85 35-75 18-32
I/4 Hard UTS YS EL HV	CW10% 48 43 25 90	CW10% 40 35	CW10% 70		75-90	75-90	75-90
I/2 Hard UTS YS EL HV	CW25% 55 53 7	CW25% 45 42 125	CW25% 80	CW25% 64 18	85-100	85-100	85-100
3/4 Hard UTS YS EL HV	CW50% 63 62 2 135	CW50% 55 53	CW50% 100 210	CW50% 71 15	95-110	95-110	95-110
Hard UTS YS EL HV	CW70% 70 69 I	CW70% 70 69	CW70% 115 230	CW70% 84 8	100 Min	. 100 Min.	100 Min.
Extra Hard UTS YS EL HV							
Spring UTS YS EL HV							
Ex. Spring UTS YS EL HV							

PRECIOUS METAL ALLOYS

Material	Composition	Densitylbs/in ³	Coating Technology	ASTM Specification	Hardness(HK) Annealed-Spring	Resistivity	Typical Applications
DRY CIRCUIT							
Soft Gold	99.9 Au	0.698	Plated	B-488	40-90	2.4	C, S ,L, R
Hard Au	99.7 Au	0.633	Plated	B-488	130-200	2.9-4.7	C, S ,L, R
Palladium	99.8 Pd	0.434	Plated	B-679	200-300	10.7	C, S ,L, R
Palladium Nickel	80 Pd, 20 Ni	0.405	Plated	B-867	250-500	19	C, S, R
24kt Gold	99.99 Au	0.698	Clad	B-562	40-90	2.4	C, S ,L, R
18 kt Gold	75 Au, 25 Ag	0.577	Clad		65-135		C, S, R
14 kt Gold	58 Au, 42 Ag	0.516	Clad		70-145		C, S, R
WE#1	69 Au, 25 Ag, 6 Pt	0.580	Clad	B-522	90-170	15.4	C, S, R
Palladium	99.9 Pd	0.434	Clad	B-683	80-160	10.7	C, S ,L, R
Palladium Nickel	90 Pd, 10 Ni	0.419	Clad		145-265	16*	C, S, R
Palladium Nickel	80 Pd, 20 Ni	0.405	Clad		180-310	19	C, S, R
Palladium Silver	60 Pd, 40 Ag	0.410	Clad	B-731	120-210	43	C, S, R
Palladium Silver	50 Pd, 50 Ag	0.404	Clad		110-200		C, S, R
	65 Au, 21 Pd, 14 Ag	0.560	Clad		140-250	47	C, S, R
DGR-156	Diffused Au, 60 Pd, 40 Ag	0.439	Clad		140-200		C, S, R
	WE#1 Capped, 60 Pd, 40 Ag	0.460	Clad		110-190		C, S, R
DGPN	Diffused Au, PdNi	.5	Clad		150-280		C, S, R
Paliney 6™	44 Pd, 38 Ag, 16 Cu, 1 Pt, 1 Ni	0.390	Clad	B-563	290-370	25.8	C, S, R
Paliney 7™	35 Pd, 30 Ag, 14 Cu, 10 Au, 10 Pt, I Zn	0.426	Clad	B-540	330-400	31.6	C, S, R
Gold Alloys	70 Au, 24 Ag, 6 Cu	0.549	Clad		115-190	23	C, S, R
	70 Au, 20 Ag, 10 Cu	0.543	Clad		140-220	31	C, S, R
	96 Au, 4 Ni	0.667	Clad		110-200	11	C, S, R
	90 Au, 10 Ni	0.625	Clad		205-280	22	C, S, R
Platinum	99.9 Pt	0.775	Clad	B-561	75-140	10.6	R
SWITCHING							
Silver		0.379	Plated	B-700	40-185	1.7	S, L
Silver	99.9 Ag	0.379	Clad	B-742	40-90	1.7	S, L
Silver Nickel	90 Ag, 10 Ni	0.372	Clad	B-693	70-105	2.1	S, R
Coin Silver	90 Ag, 10 Cu	0.373	Clad	B-617	80-120	2.1	S
	75 Ag, 24.5 Cu, 0.5 Ni	0.408	Clad	B-780	95-130	2.4	S
ВТ	72 Ag, 28 Cu	0.361	Clad	B-628	90-130	2.1	В
SilverTin Oxide	90 Ag, 10 SnO ₂	0.357	Clad	B-844	100-130	2.3	S, R
Silver Cadmium Oxide	90 Ag, 10 CdO	0.368	Clad	B781	95-130	2.2	S, R

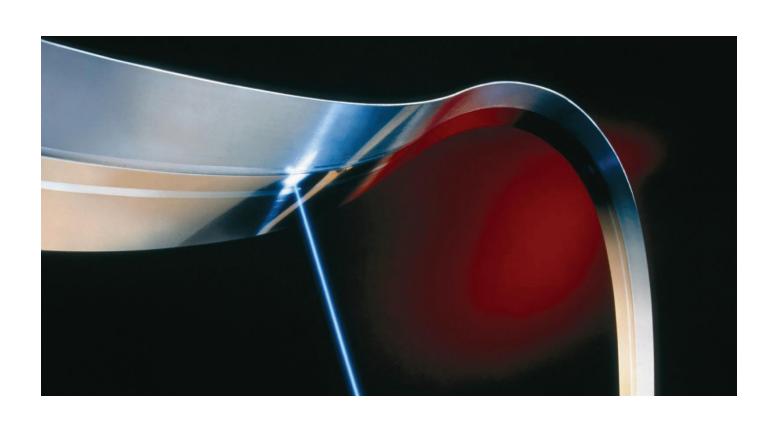


This table lists the potential differences for various metals in water at 77°F (25°C). The order of the series can change for different electrolytes (for example, different pH, ions in solution).

Anodic end: The corrosion occurs here.

ELEMENT	STANDARD ELECTRODE POTENTIAL (VOLTS)
Lithium	-3.045
Potassium	-2.920
Sodium	-2.712
Magnesium	-2.340
Beryllium	-1.700
Aluminum	-1.670
Manganese	-1.050
Zinc	-0.762
Chromium	-0.744
Iron, Mild Steel	-0440
Cadmium	-0.402
Yellow Brass	-0.350
50-50 Tin-Lead Solder	-0.325
Cobalt	-0.277
Nickel	-0.250
Tin	-0.136
Lead	-0.126
Hydrogen Reference Electrode	0.000
Titanium	+0.055
Copper	+0.340
Mercury	+0.789
Silver	+0.799
Carbon	+0.810
Platinum	+1.200
Gold	+1.420
Graphite	+2.250

Cathodic end (passive): The corrosion does not occur here.


Note: Stainless steel alloys have not been included in the above table. They can significantly change their potential and become much more active if exposed to stagnant or poorly aerated water.

SOLDERS Continued a Density

9.58 9.33 7.30 7.29 8.55 8.22
9.58 9.33 7.30 7.29 8.55 8.22
9.33 7.30 7.29 8.55 8.22
9.33 7.30 7.29 8.55 8.22
7.30 7.29 8.55 8.22
7.29 8.55 8.22
8.55 8.22
8.22
7.27
7.37
7.31
8.89
8.03
8.41
8.34
8.49
7.42
8.50
7.85
8.68
7.70
8.86
8.87
7.55
7.35
7.39
7.39
9.80
7.39
7.39
7.36
7.28
7.24
9.47
9.66
9.80
10.50
10.04
10.48
10.50
7.34

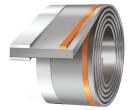
BRAZING ALLOYS

Fahr	enheit	Commonté de la common	Centi	grade	Density		
Solidus	Liquidus	Composition	Solidus	Liquidus	(lb/c.in)	(g/cc)	
BRAZING				•			
1125	1145	BAg-1 (45 Ag, 24 Cd, 16 Zn, 15 Cu)	605	620	0.340	9.41	
1160	1175	BAg-1a (50 Ag, 18 Cd, 16.5 Zn, 15.5 Cu)	625	635	0.341	9.45	
1145	1205	BAg-7 (56 Ag, 22 Cu, 17 Zn, 5 Sn)	620	650	0.340	9.41	
1170	1270	BAg-3 (50 Ag, 16 Cd, 15.5 Cu, 15.5 Zn, 3 Ni)	630	690	0.344	9.53	
1125	1295	BAg-2 (35 Ag, 26 Cu, 21 Zn, 18 Cd)	605	700	0.322	9.19	
1220	1305	BAg-24 (50 Ag, 20 Cu, 28 Zn, 2 Ni)	660	705	0.324	8.98	
1240	1325	BAg-9 (65 Ag, 20 Cu, 15 Zn)	671	718	0.347	9.60	
1200	1330	BAg-34 (38 Ag, 32 Cu, 28 Zn, 2 Sn)	650	721	0.327	9.05	
1225	1370	BAg-5 (45 Ag, 30 Cu, 25 Zn)	665	745	0.329	9.11	
1435	1435	BAg-8 (BT) (72 Ag, 28 Cu)	780	780	0.360	9.96	
1742	1742	82 Au, 18 Ni	950	950	0.571	15.81	
1761	1761	99.9 Ag	960	960	0.379	10.50	
CERAMIC A	CTIVE METAL	LAMINATES					
1425	1726	TiLam (88 Ag, 9.5 Cu, 2.5 Ti)	774	959	0.359	9.94	
1049	1623	TiLam 72 (70 Ag, 27 Cu, 3 Ti)	765	884	0.349	9.67	

ALLOY COMPATIBILITY

†	CLA	DDING (OK PLA	111140	METAL	(D)

								O					
A	can be combined with B via:	Aluminum	Brazing Alloys	Carbon Steel	Copper	Copper Be	Copper Brass	Copper Bronze	Cupro Nickel	Plog	Gold Alloys	Iron	Lead
	Aluminum Alloys	С		С	С	С		С	С	С	С	С	С
€	Brazing Alloys		CE	CE	CEP	CE	С	CE	С	CEP	CE	CE	Cl
AL	Carbon Steel	Cl	С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	Cl
METAL	Copper	С	С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	С
	Copper Be		С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	Cl
BASE	Copper Brass		С	С	СР	С	С	С	С	СР	С	С	Cl
••	Copper Bronze	С	С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	Cl
	Cupro Nickel	Cl	С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	Cl
	Gold Alloys		С	CE		CE		CE	CE	CEP	CE	CE	
	Iron	Cl	С	CE	CEP	CE	С	CE	CE	CEP	CE	CE	Cl
	Lead	С			С		С	С	С	С	С	С	С
	Molybdenum ²	Cl		Е	ΕP	Е		Е	Е	ΕP		Е	
	Nickel	С	С	CE	CEP	CE	С	CE	CE	EΡ	CE	CE	С
	Fe-Ni CTE Alloy	Cl	С	CE	CEP	CE	С	CE	CE	EΡ	СE	CE	Cl
	Niobium	Cl	Cl	CE	CEP	CE	Cl	CE	CE	CEP	СE	СE	Cl
	Palladium Alloys	Cl	С	CE	CEP			CE	CE	CEP	СE	СE	
	Platinum	Cl	С	CE	CEP			CE	CE	CEP	СE	СE	
	Silver Alloy	Cl	С	E	CEP	CE	С	CE	CE	CEP	СE	СE	С
	SS 300 Series	Cl	Cl	CE	CEP	Е	Cl	CE	CE	CEP	СE	CE	Cl
	SS 400 Series	Cl	С	CE	CEP	CE	С	CE	CE	CEP	СE	CE	Cl
	Tantalum	Cl	Cl	C ^I E	C ^I E	C ^I E	Cl	C ^I E	C ^I E	C ^I E	Cl E	CE	Cl
	Titanium	Cl	С	CE	CE	CE	С	CE	CE	CE	CE	CE	Cl
	Zinc	С			С					С			С


Rolled tempers only.

E = ELECTRON **BEAM WELDING**

P = PLATING

 $^{^{\}rm 2}$ Normally requires hot bonding, Plating requires Ni interliner.

³ SnPb plating only.

Nickel	Fe-Ni CTE Alloy	Niobium	Palladium	Palladium Alloys	Platinum	Silver	Silver Alloy	Solder Alloys ³	SS 300 Series	SS 400 Series	Tantalum	Ë	Titanium	Zinc
С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
CE	CE	CE	CEP	CE	CE	CEP	CE	C ^I P	C ^I E	CE	CE	C ^I P	CE	Cl
CEP	CE	CE	CEP	CE	CE	CEP	CE	C ^I P	CE	CE	CE	C ^I P	CE	Cl
CEP	CE	CE	CEP	CE	CE	CEP	CE	СР	CE	CE	CE	СР	CE	С
CEP	СE	CE	Р		CE	CEP	CE	C ^I P	Е	CE	CE	C ^I P	CE	Cl
СР	С	С	СР	С	С	C PC ^l	С	Cl P	CI	С	С	C ^I P	С	Cl
CEP	CE	CE	CEP	CE	CE	CEP	CE	Cl P	C ^I E	CE	CE	Cl P	CE	Cl
CEP	СE	CE	CEP	СE	CE	CEP	CE	C ^I P	CE	CE	CE	C ^I P	CE	Cl
CE	CE	Е	CEP	CE	CE	CEP	CE		Е	Е				
CEP	СE	CE	CEP	СE	CE	CEP	CE	C ^I P	CE	CE	CE	C ^I P	CE	Cl
С		С	С	С	С	С	С	С				С		С
Е	Е	Е	EΡ	Е	Е	ΕP	Е	Р	Е	Е	Е	Р	Е	С
CEP	CE	CE	CEP	CE	CE	CEP	CE	Cl P	CE	CE	CE	Cl P	CE	С
CEP	СE	CE	CEP	CE	CE	CEP	CE	C ^I P	CE	CE	CE	C ^I P	CE	Cl
CE	СE	CE	CE	СE	CE	CE	CE	Cl	CE	CE	CE	Cl	CE	Cl
CE	CE	CE	CEP	CE	CE	CEP	CE							
CE			CEP	CE	CE	CEP	CE							
CEP	CE	CE	CEP	CE	CE	CEP	CE	СР			CE	СР	CE	С
CEP	CE	CE	CEP	CE	CE	CEP	CE	Cl P	CE	CE	CE	Cl P	CE	Cl
CEP	CE	CE	CEP	CE	CE	CEP	CE	C ^I P	CE	CE	CE	C ^l P	CE	Cl
CE	CE	CE	CE	CE	CE	CE	CE	Cl	CE	CE	CE	Cl	CE	Cl
CE	CE	CE	CE	CE	CE	CE	CE	Cl	CE	CE	CE	Cl	CE	Cl
			С			С	С	С				С		С

NOT YOUR AVERAGE HARDNESS VALUES CHART

Vickers Hardness	Knoop Hardness		Rockwe lardnes		RockwellSuperficia Hardness		
HV	нк	В	С	F	15-T	30-T	15-N
940	920	-	68	-	-	-	93.2
900	895	-	67	-	-	-	92.9
865	870	-	66	-	-	-	92.5
832	846	-	65	-	-	-	92.2
800	822	-	64	-	-	-	91.8
772	799	-	63	-	-	-	91.4
746	776	-	62	-	-	-	91.1
720	754	-	61	-	-	-	90.7
697	732	-	60	-	-	-	90.2
674	710	-	59	-	-	-	90.8
653	690	-	58	-	-	-	89.3
633	670	-	57	-	-	-	88.9
613	650	-	56	-	-	-	88.3
595	630	-	55	-	-	-	87.9
577	612	-	54	-	-	-	87.4
560	594	-	53	-	-	-	86.9
544	576	-	52	-	-	-	86.4
528	558	-	51	-	-	-	85.9
513	542	-	50	-	-	-	85.5
481	506	-	48	-	-	-	84.5
452	476	-	46	-	-	-	93.5
427	450	-	44	-	-	-	82.5
404	427	-	42	-	-	-	81.5
382	436	-	40	-	-	-	80.5
362	413	-	38	-	-	-	79.5
344	392	-	36	_	-	-	78.5
326	372	-	34	-	-	-	77.5
309	353	-	32	-	94.5	85.5	76.5
295	337	-	30	-	94.0	85.0	75.5
285	325	-	28.5	-	94.0	84.5	75.0

Vickers Hardness	Knoop Hardness		lockwe lardnes		RockwellSuperficial Hardness		
HV	нк	В	C	F	15-T	30-T	15-N
266	304	-	25.5	-	93.0	83.0	73.5
248	283	100	22.5	-	92.5	81.5	72.0
234	267	98	20.0	-	92.0	80.5	70.5
220	251	96	17.0	-	91.0	79.0	69.0
209	239	94	14.5	-	90.5	77.5	68.0
198	226	92	12.0	-	89.5	76.0	66.5
196	224	94.0	11.4	110.0	90.0	77.5	66.2
194	222	93.5	10.8	109.5	89.8	77.2	65.9
192	219	93.0	10.2	109.2	89.7	77.0	65.6
190	217	92.5	9.6	109.0	89.6	76.6	65.3
188	215	92.0	9.0	108.7	89.5	76.3	65.0
186	212	91.5	8.4	108.5	89.4	76.0	64.7
184	210	91.0	7.8	108.2	89.2	75.7	64.4
182	208	90.5	7.2	108.0	89.1	75.4	64.1
180	205	90.0	6.6	107.5	89.0	75.1	63.8
178	203	89.0	6.0	107.2	88.8	74.7	63.5
176	201	88.5	-	107.0	88.6	74.4	63.2
174	198	88.0	-	106.7	88.5	74.0	62.9
172	196	87.5	-	106.5	88.3	73.6	62.5
170	194	87.0	-	106.2	88.2	73.3	62.0
168	192	86.0	-	106.0	88.0	73.0	61.8
166	190	85.5	-	105.7	87.9	72.5	61.6
164	187	85.0	-	105.5	87.7	72.2	61.4
162	185	84.0	-	105.0	87.6	71.8	-
160	182	83.5	-	104.7	87.4	71.5	-
158	180	83.0	-	104.5	87.2	71.0	-
156	178	82.0	-	104.0	87.0	70.5	-
154	176	81.5	-	103.5	86.8	70.1	-
152	174	80.5	-	103.0	86.6	69.8	-
150	172	80.0	-	102.7	86.4	69.5	-

Blue: STEELS (non-austenitic) (Ref. ASTM E140-06 Hardness Conversion Chart, Table 1)

Black: NICKEL ALLOYS (Ref. ASTM E140-06 Hardness Conversion Chart, Table 2)

Red: BRASS (C260) (Ref. ASTM E140-06 Hardness Conversion Chart, Table 3)

Green: COPPER (Ref. ASTM E140-06 Hardness Conversion Chart, Table 7)

NOT YOUR AVERAGE HARDNESS VALUES CHART

Vickers Hardness	Knoop Hardness	Rockwell Hardness			Superficial Iness
HV	НК	В	F	15-T	30-T
148	169	79.0	102.5	86.2	69.0
146	167	78.0	102.0	86.0	68.5
144	165	77.5	101.5	85.8	68.0
142	162	77.0	0.101	85.6	67.5
140	160	76.0	100.5	85.4	67.0
138	158	75.0	100.0	85.2	66.5
136	156	74.5	99.5	85.0	66.0
134	153	73.5	99.0	84.7	65.5
132		73.0	98.5	84.5	65.0
130	138.7	72.0	98.0	84.3	64.3
128	136.8	71.0	97.5	84.0	63.6
126	134.9	70.0	97.0	83.7	63.0
124	133.0	69.0	96.5	83.4	62.5
122	131.0	68.0	96.0	83.1	61.8
120	129.0	67.0	95.5	82.7	61.2
118	127.1	66.0	95.0	82.4	60.5
116	125.1	65.0	94.5	82.0	60.0
114	123.2	64.0	94.0	81.5	59.3
112	121.4	63.0	93.0	81.2	58.7
110	119.5	62.0	92.6	80.7	58.0
108	117.5	61.0	92.0	80.3	57.0
106	115.6	59.5	91.2	79.9	56.0
104	113.5	58.0	90.5	79.5	55.2
102	111.5	57.0		79.0	54.5
100	109.4	56.0	87.0	78.5	53.5
98	107.3	54.0	85.5	78.0	52.5
96	105.3	53.0	84.5	77.5	51.5
94	103.2	51.0	83.0	77.0	50.5
92	101.0	49.5	82.0	76.5	49.0
90	98.9	47.5	81.0	75.5	48.0

Wistons	17	Rockwell		RockwellSuperficial			
Vickers Hardness	Knoop Hardness		cwell Iness		Superficial Iness		
HV	нк	В	F	15-T	30-T		
88	96.9	46.0	79.5	750	47.0		
86	95.5	44.0	78.0	74.5	45.5		
84	92.3	42.0	76.5	73.5	44.0		
82	90.1	40.0	74.5	73.0	43.0		
80	87.9	37.5	73.0				
78	85.7	35.0	71.0	72.5	37.5		
76	83.5	32.5	69.0	71.5	36.0		
74	81.1	30.0	67.5	70.0	34.0		
72	79.9	27.5	66.0	69.0	32.0		
70	76.8	24.5	64.0	67.5	30.0		
68	74.1	21.5	62.0	66.0	28.0		
66	71.9	18.5	60.0	64.5	25.5		
64	69.5	15.5	57.7	62.8	23.5		
62	67.0	12.5	56.0	61.0	21.0		
60	64.6	10.0	54.0	59.0	18.0		
58	62.0	-	51.5	57.0	15.5		
56	59.8	-	49.0	55.1	13.0		
54	57.4	-	47.0	53.2	10.0		
52	55.0	-	44.0	51.5	7.5		
50	52.8	-	41.5	49.5	4.5		
49	51.5	-	40.3	48.5	-		
48	50.3	-	39.0	47.4	-		
47	49.1	-	37.5	46.2	-		
46	48.0	-	36.0	45.0	-		
45	46.5	-	34.8	44.0	-		
44	45.9	-	33.5	43.0	-		
43	44.3	-	32.0	42.0	-		
42	42.7	-	30.5	41.0	-		
42	42.7	-	30.5	41.0	-		
40	40.2	-	28.0	38.5	-		

MATERION LOCATIONS

Main Office and Manufacturing Facility Lincoln, Rhode Island

U.S. Sales/Technical Support Aurora, Illinois Lincoln, Rhode Island

International Sales/Technical Support

EuropeStuttgart, Germany

Asia Seoul, South Korea Shanghai, China Singapore Tokyo, Japan

ABOUT MATERION

Materion is among the world's premier providers of advanced materials solutions and services. We offer a broad scope of products, services and expertise needed to drive our customers' growth and profitability and become a trusted partner. Materion Corporation common stock trades on the New York Stock Exchange under the symbol MTRN.

5 Wellington Road Lincoln, RI 02865 USA 401.333.1700 Phone 800.241.2523 Toll-free www.materion.com/cladding